Monotone Iterations for Elliptic Variational Inequalities
نویسنده
چکیده
A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non–differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex minimization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the convergence speed. We present a general convergence theory and discuss several applications.
منابع مشابه
On the Monotone Mappings in CAT(0) Spaces
In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods by combining the resolvent method with Halpern's iterative method and viscosity approximation method for finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations in ...
متن کاملA Relaxed Extra Gradient Approximation Method of Two Inverse-Strongly Monotone Mappings for a General System of Variational Inequalities, Fixed Point and Equilibrium Problems
متن کامل
Monotone Multigrid Methods for Elliptic Variational Inequalities I
We derive fast solvers for discrete elliptic variational inequalities of the rst kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear nite elements. Using basic ideas of successive subspace correction, we modify well-known relaxation methods by extending the set of search directions. Extended underrelaxations are called monotone multigr...
متن کاملMonotone Multigrid Methods for Elliptic Variational Inequalities I 1
We derive fast solvers for discrete elliptic variational inequalities of the rst kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear nite elements. Using basic ideas of successive subspace correction, we modify well{known relaxation methods by extending the set of search directions. Extended under-relaxations are called monotone multig...
متن کامل